3.1.83 \(\int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx\) [83]

3.1.83.1 Optimal result
3.1.83.2 Mathematica [A] (verified)
3.1.83.3 Rubi [A] (verified)
3.1.83.4 Maple [A] (warning: unable to verify)
3.1.83.5 Fricas [B] (verification not implemented)
3.1.83.6 Sympy [F]
3.1.83.7 Maxima [F]
3.1.83.8 Giac [F(-2)]
3.1.83.9 Mupad [F(-1)]

3.1.83.1 Optimal result

Integrand size = 26, antiderivative size = 148 \[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=\frac {2 c \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{a^{5/2} f}-\frac {23 c \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)}}\right )}{8 \sqrt {2} a^{5/2} f}-\frac {c \tan (e+f x)}{2 f (a+a \sec (e+f x))^{5/2}}-\frac {7 c \tan (e+f x)}{8 a f (a+a \sec (e+f x))^{3/2}} \]

output
2*c*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))/a^(5/2)/f-23/16*c*ar 
ctan(1/2*a^(1/2)*tan(f*x+e)*2^(1/2)/(a+a*sec(f*x+e))^(1/2))/a^(5/2)/f*2^(1 
/2)-1/2*c*tan(f*x+e)/f/(a+a*sec(f*x+e))^(5/2)-7/8*c*tan(f*x+e)/a/f/(a+a*se 
c(f*x+e))^(3/2)
 
3.1.83.2 Mathematica [A] (verified)

Time = 1.49 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.20 \[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=-\frac {\left (-64 c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-c \sec (e+f x)}}{\sqrt {c}}\right ) \cos ^4\left (\frac {1}{2} (e+f x)\right ) \sec ^2(e+f x)+46 \sqrt {2} c^{3/2} \text {arctanh}\left (\frac {\sqrt {c-c \sec (e+f x)}}{\sqrt {2} \sqrt {c}}\right ) \cos ^4\left (\frac {1}{2} (e+f x)\right ) \sec ^2(e+f x)+c (11+7 \sec (e+f x)) \sqrt {c-c \sec (e+f x)}\right ) \tan (e+f x)}{8 f (a (1+\sec (e+f x)))^{5/2} \sqrt {c-c \sec (e+f x)}} \]

input
Integrate[(c - c*Sec[e + f*x])/(a + a*Sec[e + f*x])^(5/2),x]
 
output
-1/8*((-64*c^(3/2)*ArcTanh[Sqrt[c - c*Sec[e + f*x]]/Sqrt[c]]*Cos[(e + f*x) 
/2]^4*Sec[e + f*x]^2 + 46*Sqrt[2]*c^(3/2)*ArcTanh[Sqrt[c - c*Sec[e + f*x]] 
/(Sqrt[2]*Sqrt[c])]*Cos[(e + f*x)/2]^4*Sec[e + f*x]^2 + c*(11 + 7*Sec[e + 
f*x])*Sqrt[c - c*Sec[e + f*x]])*Tan[e + f*x])/(f*(a*(1 + Sec[e + f*x]))^(5 
/2)*Sqrt[c - c*Sec[e + f*x]])
 
3.1.83.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.38, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.346, Rules used = {3042, 4392, 3042, 4375, 373, 402, 27, 397, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c-c \sec (e+f x)}{(a \sec (e+f x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {c-c \csc \left (e+f x+\frac {\pi }{2}\right )}{\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4392

\(\displaystyle -a c \int \frac {\tan ^2(e+f x)}{(\sec (e+f x) a+a)^{7/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle -a c \int \frac {\cot \left (e+f x+\frac {\pi }{2}\right )^2}{\left (\csc \left (e+f x+\frac {\pi }{2}\right ) a+a\right )^{7/2}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle \frac {2 c \int \frac {\tan ^2(e+f x)}{(\sec (e+f x) a+a) \left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1\right ) \left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+2\right )^3}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{a f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {2 c \left (-\frac {\int \frac {1-\frac {3 a \tan ^2(e+f x)}{\sec (e+f x) a+a}}{\left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1\right ) \left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+2\right )^2}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{4 a}-\frac {\tan (e+f x)}{4 a \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )^2}\right )}{a f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {2 c \left (-\frac {\frac {\int \frac {a \left (9-\frac {7 a \tan ^2(e+f x)}{\sec (e+f x) a+a}\right )}{\left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1\right ) \left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+2\right )}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{4 a}+\frac {7 \tan (e+f x)}{4 \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )}}{4 a}-\frac {\tan (e+f x)}{4 a \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )^2}\right )}{a f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 c \left (-\frac {\frac {1}{4} \int \frac {9-\frac {7 a \tan ^2(e+f x)}{\sec (e+f x) a+a}}{\left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1\right ) \left (\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+2\right )}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )+\frac {7 \tan (e+f x)}{4 \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )}}{4 a}-\frac {\tan (e+f x)}{4 a \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )^2}\right )}{a f}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {2 c \left (-\frac {\frac {1}{4} \left (16 \int \frac {1}{\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+1}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )-23 \int \frac {1}{\frac {a \tan ^2(e+f x)}{\sec (e+f x) a+a}+2}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )\right )+\frac {7 \tan (e+f x)}{4 \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )}}{4 a}-\frac {\tan (e+f x)}{4 a \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )^2}\right )}{a f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 c \left (-\frac {\frac {1}{4} \left (\frac {23 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a \sec (e+f x)+a}}\right )}{\sqrt {2} \sqrt {a}}-\frac {16 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{\sqrt {a}}\right )+\frac {7 \tan (e+f x)}{4 \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )}}{4 a}-\frac {\tan (e+f x)}{4 a \sqrt {a \sec (e+f x)+a} \left (\frac {a \tan ^2(e+f x)}{a \sec (e+f x)+a}+2\right )^2}\right )}{a f}\)

input
Int[(c - c*Sec[e + f*x])/(a + a*Sec[e + f*x])^(5/2),x]
 
output
(2*c*(-1/4*Tan[e + f*x]/(a*Sqrt[a + a*Sec[e + f*x]]*(2 + (a*Tan[e + f*x]^2 
)/(a + a*Sec[e + f*x]))^2) - (((-16*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + 
 a*Sec[e + f*x]]])/Sqrt[a] + (23*ArcTan[(Sqrt[a]*Tan[e + f*x])/(Sqrt[2]*Sq 
rt[a + a*Sec[e + f*x]])])/(Sqrt[2]*Sqrt[a]))/4 + (7*Tan[e + f*x])/(4*Sqrt[ 
a + a*Sec[e + f*x]]*(2 + (a*Tan[e + f*x]^2)/(a + a*Sec[e + f*x]))))/(4*a)) 
)/(a*f)
 

3.1.83.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 

rule 4392
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_))^(n_.), x_Symbol] :> Simp[((-a)*c)^m   Int[Cot[e + f*x]^(2*m)*( 
c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E 
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !( 
IntegerQ[n] && GtQ[m - n, 0])
 
3.1.83.4 Maple [A] (warning: unable to verify)

Time = 2.66 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.64

method result size
default \(\frac {c \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-2 \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}} \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+16 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right )+7 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-23 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{16 a^{3} f}\) \(243\)
parts \(-\frac {c \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (2 \left (1-\cos \left (f x +e \right )\right )^{3} \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \csc \left (f x +e \right )^{3}-32 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right )-13 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+43 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{32 f \,a^{3}}-\frac {c \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (2 \left (\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1\right )^{\frac {3}{2}} \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-3 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+3 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )+\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\right )\right )}{32 f \,a^{3}}\) \(441\)

input
int((c-c*sec(f*x+e))/(a+a*sec(f*x+e))^(5/2),x,method=_RETURNVERBOSE)
 
output
1/16/a^3*c/f*(-2*a/((1-cos(f*x+e))^2*csc(f*x+e)^2-1))^(1/2)*((1-cos(f*x+e) 
)^2*csc(f*x+e)^2-1)^(1/2)*(-2*((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(3/2)*(-co 
t(f*x+e)+csc(f*x+e))+16*2^(1/2)*arctanh(2^(1/2)/((1-cos(f*x+e))^2*csc(f*x+ 
e)^2-1)^(1/2)*(-cot(f*x+e)+csc(f*x+e)))+7*((1-cos(f*x+e))^2*csc(f*x+e)^2-1 
)^(1/2)*(-cot(f*x+e)+csc(f*x+e))-23*ln(csc(f*x+e)-cot(f*x+e)+((1-cos(f*x+e 
))^2*csc(f*x+e)^2-1)^(1/2)))
 
3.1.83.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 260 vs. \(2 (123) = 246\).

Time = 0.56 (sec) , antiderivative size = 605, normalized size of antiderivative = 4.09 \[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=\left [-\frac {23 \, \sqrt {2} {\left (c \cos \left (f x + e\right )^{3} + 3 \, c \cos \left (f x + e\right )^{2} + 3 \, c \cos \left (f x + e\right ) + c\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 3 \, a \cos \left (f x + e\right )^{2} - 2 \, a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) + 32 \, {\left (c \cos \left (f x + e\right )^{3} + 3 \, c \cos \left (f x + e\right )^{2} + 3 \, c \cos \left (f x + e\right ) + c\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right ) + 4 \, {\left (11 \, c \cos \left (f x + e\right )^{2} + 7 \, c \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )}{32 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} + 3 \, a^{3} f \cos \left (f x + e\right )^{2} + 3 \, a^{3} f \cos \left (f x + e\right ) + a^{3} f\right )}}, \frac {23 \, \sqrt {2} {\left (c \cos \left (f x + e\right )^{3} + 3 \, c \cos \left (f x + e\right )^{2} + 3 \, c \cos \left (f x + e\right ) + c\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - 32 \, {\left (c \cos \left (f x + e\right )^{3} + 3 \, c \cos \left (f x + e\right )^{2} + 3 \, c \cos \left (f x + e\right ) + c\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - 2 \, {\left (11 \, c \cos \left (f x + e\right )^{2} + 7 \, c \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sin \left (f x + e\right )}{16 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} + 3 \, a^{3} f \cos \left (f x + e\right )^{2} + 3 \, a^{3} f \cos \left (f x + e\right ) + a^{3} f\right )}}\right ] \]

input
integrate((c-c*sec(f*x+e))/(a+a*sec(f*x+e))^(5/2),x, algorithm="fricas")
 
output
[-1/32*(23*sqrt(2)*(c*cos(f*x + e)^3 + 3*c*cos(f*x + e)^2 + 3*c*cos(f*x + 
e) + c)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f* 
x + e))*cos(f*x + e)*sin(f*x + e) - 3*a*cos(f*x + e)^2 - 2*a*cos(f*x + e) 
+ a)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) + 32*(c*cos(f*x + e)^3 + 3*c*c 
os(f*x + e)^2 + 3*c*cos(f*x + e) + c)*sqrt(-a)*log((2*a*cos(f*x + e)^2 + 2 
*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e 
) + a*cos(f*x + e) - a)/(cos(f*x + e) + 1)) + 4*(11*c*cos(f*x + e)^2 + 7*c 
*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/(a^3* 
f*cos(f*x + e)^3 + 3*a^3*f*cos(f*x + e)^2 + 3*a^3*f*cos(f*x + e) + a^3*f), 
 1/16*(23*sqrt(2)*(c*cos(f*x + e)^3 + 3*c*cos(f*x + e)^2 + 3*c*cos(f*x + e 
) + c)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos( 
f*x + e)/(sqrt(a)*sin(f*x + e))) - 32*(c*cos(f*x + e)^3 + 3*c*cos(f*x + e) 
^2 + 3*c*cos(f*x + e) + c)*sqrt(a)*arctan(sqrt((a*cos(f*x + e) + a)/cos(f* 
x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - 2*(11*c*cos(f*x + e)^2 + 7* 
c*cos(f*x + e))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sin(f*x + e))/(a^3 
*f*cos(f*x + e)^3 + 3*a^3*f*cos(f*x + e)^2 + 3*a^3*f*cos(f*x + e) + a^3*f) 
]
 
3.1.83.6 Sympy [F]

\[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=- c \left (\int \frac {\sec {\left (e + f x \right )}}{a^{2} \sqrt {a \sec {\left (e + f x \right )} + a} \sec ^{2}{\left (e + f x \right )} + 2 a^{2} \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )} + a^{2} \sqrt {a \sec {\left (e + f x \right )} + a}}\, dx + \int \left (- \frac {1}{a^{2} \sqrt {a \sec {\left (e + f x \right )} + a} \sec ^{2}{\left (e + f x \right )} + 2 a^{2} \sqrt {a \sec {\left (e + f x \right )} + a} \sec {\left (e + f x \right )} + a^{2} \sqrt {a \sec {\left (e + f x \right )} + a}}\right )\, dx\right ) \]

input
integrate((c-c*sec(f*x+e))/(a+a*sec(f*x+e))**(5/2),x)
 
output
-c*(Integral(sec(e + f*x)/(a**2*sqrt(a*sec(e + f*x) + a)*sec(e + f*x)**2 + 
 2*a**2*sqrt(a*sec(e + f*x) + a)*sec(e + f*x) + a**2*sqrt(a*sec(e + f*x) + 
 a)), x) + Integral(-1/(a**2*sqrt(a*sec(e + f*x) + a)*sec(e + f*x)**2 + 2* 
a**2*sqrt(a*sec(e + f*x) + a)*sec(e + f*x) + a**2*sqrt(a*sec(e + f*x) + a) 
), x))
 
3.1.83.7 Maxima [F]

\[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=\int { -\frac {c \sec \left (f x + e\right ) - c}{{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((c-c*sec(f*x+e))/(a+a*sec(f*x+e))^(5/2),x, algorithm="maxima")
 
output
-integrate((c*sec(f*x + e) - c)/(a*sec(f*x + e) + a)^(5/2), x)
 
3.1.83.8 Giac [F(-2)]

Exception generated. \[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((c-c*sec(f*x+e))/(a+a*sec(f*x+e))^(5/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.1.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {c-c \sec (e+f x)}{(a+a \sec (e+f x))^{5/2}} \, dx=\int \frac {c-\frac {c}{\cos \left (e+f\,x\right )}}{{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{5/2}} \,d x \]

input
int((c - c/cos(e + f*x))/(a + a/cos(e + f*x))^(5/2),x)
 
output
int((c - c/cos(e + f*x))/(a + a/cos(e + f*x))^(5/2), x)